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mainstream velocity 
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Predictions, by the Galerkin method, are presented of the stability of three- 
dimensional disturbances in laminar boundary-layer flow at zero pressure gradient 
along a concave surface. The analysis confirms Meksyn's finding 1 of more than one 
critical state; predictions for the first agree with those of Kahawita and Meroney 2 
at low Goertler number G and with the vortex amplification predictions of Smith 3 
at high G. Both the first and second critical states have G values below those of 
Meksyn; the amplification field of the second, however, encompasses the range of 
available measurements, and therein, has dimensionless vortex energy levels only 
half those of the first. The plausibility of least vortex energy as a determining factor 
in favour of the second critical field is further strengthened by its limited G range, 
the upper limit of about 7 corresponding closely to Liepmann's observations 45 of 
the onset of transition to turbulence. These findings are almost insensitive to 
mainstream Mach numbers up to 0.9, stagnation conditions up to 15 bar and 1200 K, 
and Reynolds numbers from 2000 to 6000 based on boundary layer thickness 
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This paper is prompted by the probability of the 
development of Taylor-Goertler vortices in laminar 
boundary-layer flow over the concave pressure sur- 
faces of gas-turbine stator and rotor blades. Such 
longitudinal vortices, first predicted by Goertler ~ and 
illustrated in Fig 1, are formed by the instability that 
occurs when the centrifugal forces acting on the fluid 
outweigh the ability of the radial pressure gradient 
and viscous forces to damp out small disturbances. 

In the light of the boundary-layer measure- 
ments of Liepmann 5 and the heat-transfer measure- 
ments of McCormack, Welker and Kelleher r in low- 
speed flow over concave surfaces, Martin and Brown s 
suggested that Taylor-Goertler vorticity, when inter- 
acting with mainstream turbulence, might account 
for cascade measurements of heat transfer on blade 
pressure surfaces greater than for a laminar boundary 
layer on a fiat plate. They hypothesized that the 
marked chordwise fluctuations in local heat transfer 
prior to transition arose from the progressive shedding 
of paired opposed vortices over a given blade span 
due to increases in vortex wavelength A with increases 
in flOReo (where fl is the amplification rate) in the 
flow direction. This possibility may require review in 
the light of what follows. 

More recent detailed examination of flow and 
heat-transfer measurements by Brown and Martin 9 
indicates only limited influence of the interaction 
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between vorticity and mainstream turbulence in 
enhancing laminar boundary-layer heat transfer. This 
study further suggests that transition to a turbulent 
boundary layer could be inhibited by keeping the 
velocity gradient factor k in excess of the laminariz- 
ation value of 2.5 × 10 -6 first obtained by Launder 1°. 
Maintaining entirely laminar flow, albeit with vor- 
ticity and mainstream turbulence, over the pressure 
surface of a high-temperature turbine blade by a 
sufficiently strong favourable pressure gradient would 
give lower heat transfer to the blade than if transition 
occurred. The advantages of blade design based on 
this criterion would thus include fuel economy 
through the ability to operate at higher turbine inlet 
temperatures or by mitigating blade-cooling prob- 
lems. Brown and Martin found that this criterion also 
yields improved performance compared to conven- 
tional blade design, for trailing-edge mainstream 
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Fig I Taylor-Goertler vortices on a concave surface 
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Mach number Moo between 0.5 and 1.0, through 
increased blade lift and reduced aerodynamic drag. 

Reliable knowledge is required, therefore, of 
Goertler vortices in high-temperature compressible 
flow with strongly-favourable pressure gradients in a 

-laminar boundary layer along concave surfaces of 
varying curvature, and of the extent to which such 
secondary flows, with mainstream turbulence, 
enhances laminar heat transfer. For these conditions 
we need ultimately to predict both neutral stability 
and the relation between Goertler number G and dO 

(where ot is wave number) with variation in/38Beo in 
the downstream direction x along the concave surface. 
To date this has not been established theoretically, 
even for the simple Blasius flow assumed in most 
investigations, in a way which, for instance, convinc- 
ingly predicts the measurements of Tani H and Tani 
and Sakagami lz. 

By analysis of a small three-dimensional time- 
dependent disturbance superimposed on the Blasius 
boundary layer, Goertler 6 found that the neutral sta- 
bility condition, or critical state for zero/3, achieved 

Nomenclature 

A Dimensionless product, ~8 = 2~r8/~ 
ai Coefficients in Eqs (23)-(26) for i = 1 to 24 
B Dimensionless amplification factor/38 
d Function of M and k' defined in Eq (16) 
E Dimensionless decay factor in Eqs (23)- 

(26) 
Ea Total energy of boundary-layer flow in the 

presence of vortices 
Eb Total energy of boundary-layer flow in the 

absence of vortices 
Ev Energy of vortices, (Ea-Eb) 
Fj(k') Universal functions of k', where j= 1 to 4 
G Dimensionless Goertler number, 

Ree(O/r) 1/2 
K Dimensionless product, x3 = 82/r 
k Velocity gradient factor, (v/Uoo) d Uoo/dx 
k' Function of M and A defined in Eq (17) 
M Mach number 
n Energy multiplier or polytropic index 
P Square matrix whose elements are func- 

tions of 7/ 
p Absolute pressure 
/5 Perturbed pressure component relative to 

mainstream dynamic head, pl/(½pooU~) 
Pr Fluid Prandtl number 
Q Square matrix whose elements are func- 

tions of r/ 
B Gas constant 
r Radius of curvature of concave pressure 

surface 
Be~ Reynolds number based on boundary-layer 

thickness, UooS / voo 
Beo Momentum-thickness Reynolds number, 

Uo~O/v~ 
Be, Length Reynolds number, U~x/v~ 
s Length of concave pressure surface 
T Temperature 
Uoo Mainstream velocity in x-direction 
U'/UooMainstream turbulence intensity 
/9" Unperturbed velocity component in x- 

direction relative to mainstream velocity, 
Uo/ Uoo 

u Velocity component in x-direction 
t/ Perturbed velocity component in x-direc- 

tion relative to mainstream velocity, u J  Uoo 
Unperturbed velocity component in y- 
direction relative to mainstream velocity, 
Vo/ Uo~ 

v Velocity component in y-direction 

W 
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Perturbed velocity component in y-direc- 
tion relative to mainstream velocity, vl/Uo~ 
Velocity component in z-direction 
Perturbed velocity component in z-direc- 
tion relative to mainstream velocity, 
wdUoo 
Distance downstream along concave 
s u r f a c e  

Distance from concave surface normal to 
surface 
Distance along concave surface normal to 
flow direction 
Wave number, 27r/A 
Rate of amplification of vortices 
Ratio of gaseous specific heats 
Boundary-layer thickness 
Distance along surface relative to surface 
length, x / s 
Distance normal to surface relative to 
boundary-layer thickness, y/3 
Boundary-layer momentum thickness 
Curvature of concave surface 1/r 
Modified Pohlhausen parameter, 
(#2/v)/(dU~/dx) 
Vortex wavelength 27r/a 
Dynamic viscosity of fluid 
Boundary-layer viscosity relative to main- 
stream viscosity,/Zo//Zo~ 
Kinematic viscosity 
Dimensionless vortex energy defined by Eq 
(36) 
Density of fluid 
Perturbed density component relative to 
mainstream density, pl/poo 
Unperturbed density component relative 
to mainstream density, po/poo 
Stream function 
Error in Galerkin representation 

Superscripts and subscripts 

Dimensionless ratio 
co Mainstream condition 
0 Unperturbed component in boundary layer 
1 Perturbed component in boundary layer 
x Based on distance along concave surface 
# Based on boundary-layer momentum 

thickness 
w Denotes condition at concave surface 
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minimum G of 0.58 at aO = 0.14. Larger [30Reo yield- 
ed similar curves with minima at increasing or0 and 
correspondingly higher G. Vortex disturbances have 
since been assumed to originate at minimum G, 
thereby determining their initial wavelength. Mek- 
syn's solution 1 of the same equations of motion by an 
asymptotic method, rather than by transformation, 
indicated multiple critical states, the first (I) with 
minimum G of 3.65 at aO = 0.4, and the second (II) 
with minimum G of 10.7 at aO = 0.75. Using alterna- 
tive procedures to solve Goertler's stability equations, 
Hammerlin's neutral stability prediction ~3, though 
closer to Goertler's than Meksyn's, becomes rather fiat 
at around G = 0.3 for aO < 0.05, so that minimum G 
is attained only when aO =0, and A for the initial 
vortex disturbance is infinite. These are among the 
predictions shown in Fig 2. 

Smith 3 analysed Blasius flow by the Galerkin 
method, assuming distance-dependent disturbances 
to be more consistent with physical reality than time- 
dependent disturbances, an argument accepted in all 
subsequent treatments. Smith also included in his 
simplified equations certain terms involving 
velocities in the growing boundary layer normal to 
the concave surface and certain higher-order terms 
describing the effects of surface curvature on the dis- 
turbances. These previously neglected terms were 
based on order-of-magnitude analysis which, on re- 
examination, leaves room for doubt in the justification 
for his choice, even for his assumed range of variables. 
While for large or0 Smith's neutral stability curve is 
comparable with that of Hammerlin, it gives 
minimum G of 0.31 around aO =0.07 (Fig 2) and 
hence finite initial )t. Smith also presented curves of 
constant [30Reo up to 100, with corresponding 
increases in aO for minimum G, but cautions that the 
central portions may have errors up to 10% and the 
extremities even more. 
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Fig 2 Previous and present predictions of marginal 
stability of Taylor-Goertler vortices 

The differential equations solved by numerical 
integration by Chang and Sartory 14 as the limiting 
case of their MHD study are those solved by Hammer- 
lin except for the inclusion of terms involving the 
normal velocity component of the Blasius flow, but 
without the higher-order curvature terms which 
Smith regarded as equally important. Chang and Sar- 
tory found (Fig 2) that both minimum G and the 
corresponding ~t0 for neutral stability tended to zero; 
they hence surmised that at low ~0 the neglected 
curvature terms might well limit the degree of insta- 
bility and hence the vortex size below infinity, though 
they suspect that in this region Smith's predictions of 
G could be at least an order of magnitude too large. 

These views are supported by the predictions 
of Kahawita and Meroney 2, using essentially the same 
procedure, for the limiting isothermal case of their 
study of heating effects on Taylor-Goertler vortices 
in laminar boundary layers. With both normal flow 
and additional curvature terms retained in the 
equations, G approaches a zero minimum of neutral 
stability, as found by Chang and Sartory, but at an 
asymptote of aO = 0.3 rather than zero (Fig 2). Smaller 
aO failed to give convergence to a definite positive 
eigenvalue. The discrepancy with Smith's predictions 
is ascribed to the latter's use of the Galerkin method 
combined with an assumed exponential decay rate of 
dubious validity. Kahawita and Meroney's equations 
differ from Smith's simplified equations in retaining 
further curvature terms in each momentum equation, 
whose effects may also contribute to the discrepancy. 
Moreover, for [30Ree = 0.11, their minimum G of 0.16 
at aO = 0.12 takes the form of a cusp. 

With normal flow terms excluded but curvature 
terms retained, the neutral stability prediction of 
Kahawita and Meroney in Fig 2 shows minimum G 
similar to those of Hammerlin and Smith of about 0.3 
but for aO=0.015. This discrepancy with Smith's 
critical or0 is attributed by Kahawita and Meroney to 
the further curvature terms in their equations. While 
they explain how the normal velocity component 
alters the extent of mainstream penetration of the 
vortices and in turn the dissipative influence of vis- 
cosity in the boundary layer on the perturbations, it 
is far from clear from their paper which normal flow 
terms they exclude, whether these cover normal flow 
derivatives, and whether their choice had regard to 
Smith's order-of-magnitude analysis. 

Hall ~5 suggested that the wide disagreement 
between calculations at small aO is due to the effect 
of boundary-layer growth and that parallel-flow 
approximations are only valid at large aO. For this 
region he developed an asymptotic expansion of the 
appropriate partial differential linear stability 
equations when ;t for the imposed disturbance is small 
compared to boundary-layer thickness. Although in 
qualitative agreement, his neutral stability curve lies 
significantly ~ elow those of Smith and other workers 
(Fig 2). N I~ ~ recently, Hall 16 described the regime 
for which his asymptotic results are valid; a vortex of 
fixed ;t is locally unstable for only a finite distance 
along the boundary layer for surfaces of constant 
curvature K. In the absence of non-linear effects, any 
vortex motion then ultimately decays to zero, but if 
K increases at a sufficient rate stability is never 
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achieved and the vortex flow remains unstable in the 
x-direction from the location of its inception. Hall's 
definition of neutral stability is in terms of a 
dimensionless energy function for the flow, calculated 
as a function of x, reaching a maximum or minimum. 

Aihara 17 and Kobayashi and Kohama is ana- 
lysed by iterative procedure the stability of compress- 
ible Blasius' flow; the latter workers took account of 
both density and viscosity changes with temperature 
in the boundary layer. Because normal flow terms 
were neglected, their neutral stability curves resemble 
that of Kahawita and Meroney with that exclusion. 
For both isothermal and insulated walls, Kobayashi 
and Kohama find that boundary-layer stability 
increases somewhat with M~, minimum G increasing 
from 0.56 to 0.6 as M~ increases from zero to 0.5 for 
the insulated wall case. They argue that the destabilis- 
ing effect of positive density gradient is more than 
offset by increased boundary-layer viscosity, whose 
variation was neglected by Aihara and is presumed 
to account for his numerically different predictions. 

Apart from the disagreement between calcula- 
tions outlined above, there is an evident risk to accur- 
ate prediction in neglecting particular terms in the 
continuity and momentum equations when the associ- 
ated ranges of the many variables involved cannot be 
specified suMciently closely. Accordingly, as part of 
a longer-term programme relating to high- 
temperature turbine blades, this paper presents stabil- 
ity calculations for Blasius flow by the Galerkin 
method in which no significant terms are neglected. 
The search for eigenvalues may be based on A, B or 
K; the latter is employed here. The analysis is for air 
between stagnation conditions of 1 and 15 bar and 
300 K and 1200 K, 2000<~ Be~ <~ 6000 and 0.2~ < Moo<~ 
0.9, the latter taking account of density and viscosity 
changes with temperature, and using the Grusch- 
witz 19 equations to evaluate properties of the com- 
pressible boundary layer. Yeo 2° has shown these 
equations to give G values within 10% of those in 
which compressibility is neglected, at least for Moo 
up to 0.7. The concave surface is assumed adiabatic. 

While dimensionless stability predictions 
hardly differ over the above ranges, the analysis con- 
firms Meksyn's finding a of more than one critical state, 
the first two having lower stability limits than he 
predicts. The first neutral stability curve follows that 
of Kahawita and Meroney with normal flow and addi- 
tional curvature terms retained (Fig 2), but the 
amplification curves tend to larger G for given ~OBeo. 
In Fig 2 the second neutral stability curve has G 
values from 0.97 to 6.65 over the restricted range 
0.07 <~ aO <~ 0.53. Although amplification curves have 
minima, the curves do not extend above G = 7. There 
is limited evidence of a third critical state. 

The superposition of the second critical field 
on the first appears to render attempts to relate G to 
aO for the downstream development of vortices along 
a concave surface even more difficult. The fields are 
in fact distinguished by the second having values of 
dimensionless vortex energy 7rv roughly half those of 
the first; this criterion involves less computer time for 
evaluation than the dimensionless energy function 
used by Hall t6 to identify neutral stability. For the 
second critical field, curves of constant Zrv imply 

nearly constant A and correspond with certain 
measurements by Tani 11, Tani and Sakagami, t2 
Winoto and Crane zl and Yeo22; arguably that of 
Bippes and Goertler z3 and certainly those of Han and 
Cox 24 also lie within the second critical field using 
generally accepted expressions for boundary-layer 
thickness. As in other areas of natural and applied 
science, the least energy concept thus seems to play 
a significant part, somewhat unexpectedly to the 
exclusion of the first critical state. 

Liepmann's 4'5 measurements for Blasius flow 
indicate that boundary-layer transition to turbulence 
on concave surfaces begins if G > 7; this is also the 
largest minimum for which eigenvalues could be 
found for the second critical field, perhaps because 
the basic laminar equations cease to be valid. As a 
by-product the analysis, therefore, also yields infor- 
mation consistent with the onset of transition. The 
second critical field also spans the measured transition 
range 2.3 ~ G <~ 6.1 determined by Brown and Martin 9 
for blade pressure surfaces in cascade at U ' / U ~  up 
to 0.17 in favourable pressure gradients below the 
laminarisation value of k. 

Prediction procedure 

Following the spacewise representation of Smith 3, we 
assume that the steady laminar boundary-layer flow 
along the concave surface is perturbed by the develop- 
ment of longitudinal vortices, such that physical 
quantities in this disturbed flow can be represented 
as follows:-- 

u(x, y) = Uo(X, y )+ul (y )cosazexpy /3 (x )  dx (1) 

v(x, y)= Vo(X, y) + vl(y) cos az exp f /3 (x )  dx (2) 

W(X, ~]) = Wl(Y ) sin az exp f /3 (x )  dx (3) 

p(x, y) = po(x, y)+ PI(Y) cos az exp I /3 (x)  dx (4) 

p(x,y)=po(X,y)+pl(y)cosctzexp f ~(x)dx (5) 

Through the characteristic equation of state for a 
perfect gas this system of equations (Eqs (1)-(5)) 
implicitly involves temperature and we adopt Suther- 
land's expression for the temperature dependence of 
the viscosity of air, given for the Kelvin temperature 
scale by: 

IZo oc T3/2/( To + 114) (6) 

In so doing, we neglect any perturbed component of 
viscosity and, as will be seen below, we do not con- 
sider the energy equation. The temperature is assumed 
to be unperturbed. 
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By the substitutions: 
A = a S = 2 ~ r S / A ;  B = ]38; 

K = K S = $ / r ;  71=y/8 (7) 
0 = Uo/U~;  fz = Vo/Uoo; 

= Ul/Uoo; e = Vl /Uoo (8) 

pl/ (~p~ uoo); 
/2o=/Xo//Xoo; e = x / s  (9) 

fi=Pl/P~o; Po=Po/Poo; Bea=UooS/v~ (10) 
the continuity and x, y, and z-momentum equations, 
following orthogonal transformation to the concave 
surface shown in Fig 3, and incorporation of Eqs 
(1)-(5), can be re-written respectively in the 
dimensionless forms: 

B +~a[ln~o] K } de 
[1-Krt--------~ f i t  ~ [1-Krt]  e+atb+--dr/ 

a4=o (11) 
ta--vn L 1 - Krt J J rio rio dr; 

d2fi fa[ln/2o] K v~o @Re, I] dfi 
d-~-~2+/ O; [1-Krt]  Vo drt 

I,vooCRe, atln rio] K a[ln/2ol + 
/ t Vo art [1 - Krt] art 

4 B ~ A2 _voo BORes . vo~ . alg] 
+5 [1-Krt]  = Vo [1--i-S--~] +-~o t~e*0-~rt I fi 

B O[ln #o] 7 KB 

+ [ l - K r t ]  art 3 [1-Krt]  2 

dO -- ] ^ B de  voo R e , - ~  + v~ 
Vo Vo [1-Krt ]J  V+3tl_~, .]r  v_ dr; 

AB ^ f K O f  z Q dO_] vo~ iJ 
+3[1-Krt] w+/.[i---~n] --d-~rt J R e a -  rio 

= V~opoo B#Re,  

VoPo 2[1-Krt]  

4 d2e f4  o[ln/20] 4 K voo f i r e  8] d~ 
5 d r t e+ /3  art 3 [1-Krt]  Vo J art 

B z 4K a[ln/20] A z 

+ [1-Krt]  2 3[1-Krt]  art - -  

voo BORes voo 0~i 
Vo [1-Krt]  ~o Re*-d-~] ~ 

7 KB vooSRe, a ~" 
+ 5 [1-Krt]  2 VoS[1-Krt] 0---~ 

2B 0fin/Zo] v~o 2KOBe,~ 

,o l j  3 [ 1 -  Krt] art 

A d t ~  B dfi 2A a[ln tlo] tb +-- 
3[1-Krt]  drt 3 or; 3 drt 

[ = _ -__.8° 9 + R e , - -  - -  
[ [1-Kr t ]  t-stl---Krtl a= ar t j  

v~ p~ Re, d# 

vo po 2 d rt 

,,oo~ 
Vo rio 

(12) 

(13) 

dtb d2.tb+~0[ln~o] K v~ fZRe * __ 
drt 2 [ art [1-Krt]  Vo drt 

B 2 2K 0fin/£o1 _ 4 A2 
+ [l---Krt] ~ [1-Kr t l  art 3 

v~ BORes  ] 
Vo [1-Kr t ] ]  dJ 

AB +~ KA 
3[1-Krt]  fi [3[1-Kr t ]  

voop~ A~Re,  

voPo 2 

A a[ln ~Zo]]~ e-A d~ 
or/ j 3 drt 

(14) 

Single-tmderlined terms in the Eqs (11)-(14) are those 
retaine~t both by Smith 3 and Kahawita and Merorey 2 
while double underlining refers to the further cur- 
vature terms in K retained only by the latter authors. 
We follow these workers in neglecting terms involv- 
ing K 2 and (8/s)2Brt d (s / r ) /de ,  which Smith's order- 
of-magnitude analysis showed were smaller than any 
other terms for his assumed ranges of variables. Pres- 
ent estimates which, in the light of predicted values 
of A, B and K, are based on smaller ranges of variables 
(Appendix 1), nevertheless confirm the above findings 
and indicate orders of magnitude for the second 
critical field reported below ranging from 104 to 10-6; 
they also support Smith's argument for neglecting 
(8/s)  d B / d e  in all three momentum equations, and 
for limited binomial expansion of denominator terms 
in [1-Krt]  to retain only linearity in K, the indepen- 
dent variable thereby conveniently treated as the 
eigenvalue. Although terms involving Be8 often pre- 
dominate, this, contrary to Smith's a assertion, is not 
always so; terms in A z may be at least comparable. 

Of the terms in Eqs (11) to (14) not taken into 
account by Smith 3 and Kahawita and Meroney 2, the 
term: 

vo~Re~ Of 7 

VoS[1 - Krt] ae 

U 

V W Z X 

Fig 3 Orthogonal co-ordinate transformation for  a 
concave surface 
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in Eq (13) can be between two and three orders of 
magni tude  greater than the adjacent fur ther  curvature 
term KB/[1-K~]  z inc luded by Kahawita and 
Meroney.  Moreover,  nei ther  they nor Smith include 
the terms (A/3 )d tb /d r /  in Eq (13) and (A/3)d~3/d~7 
in Eq (14), both of which  can be greater than terms 
involving these same derivatives in Eqs (13) and (14) 
which  were nevertheless retained by Smith 3 and 
Kahawita and Meroney 2. These three omissions might  
help to account  for differences between the stability 
predict ions reported below and those of earlier treat- 
ments. Hall  ~5 also comments  on the effects of the 
omissions from earlier analyses of various terms• 

As already stated, the Gruschwitz  ~9 equations 
are used to evaluate the properties of the compressible 
laminar boundary  layer• These are: 

u~o dO 
F l ( k , )  _ k  [2 - M%F2(k')] (15) 

v~ dx 

d = [1 + ( ~  --~) M%][{  +M%F3(k') ] 
+MLV,(k ' )J  (16) 

02d d Uoo 
k ' = - -  - - = A d  (17) 

v~ dx 

where F1, F2, Fa and F4 are universal funct ions of 
k'. In consequence,  Gruschwitz  ~9 assumed the veloe- 
ity distr ibution in the undis turbed laminar boundary  
layer to be: 

0 = Uo/Uo~ 

(18) 

which,  for the case of Blasius flow considered here, 
reduces to: 

0 = 2~7 - 2~7a+ 7/4 (19) 

and is adopted  for both  incompressible and compress- 
ible flow, together  with the ratio of boundary- layer  
momen tum thickness to boundary- layer  thickness 
given by: 

0 37 
c5 - 3 1 5  (20) 

Since the concave surface is assumed adiabatic,  
its tempera ture  is given by: 

Tw = [ 1 + ( ~  -~) Prt/2M~] To~ (21) 

It is therefore reasonable to assume that within the 
boundary  layer: 

To (p...~oIn--l (po~(n-1)/n 
T=--~= ,,p~/ ,,pool 

= I + ( ~ - ' ~ )  P r l / 2 M % ( 1 -  U 2) (22) 

where n exeeeds T by  an amount  dependen t  on the 
loss of stagnation pressure relative to the radial static 
pressure change needed  to balance the centrifugal  
force arising from surface curvature. For  large cur- 
vatures and small losses in stagnation pressure, n may 
well approach 3', at least over part of the boundary  

layer, and since the effect on (po/poo) ~n t>/, in Eq (22) 
is in any case small unless n >> % n is assumed equal  
to y, a l though it is accepted that condit ions are not 
strictly isentropic. Variation of fluid propert ies with 
pressure is neglected• The  representat ion of a number  
of terms in Eq (11)-(14) based on the foregoing will 
be found  in Appendix  2. 

To solve Eqs (11)-(14) by the Galerkin method  
we assume that: 

fi = e-EO[ at r I + a2 rl 2 + a3-q 3 + a4,rl 4 + as rl 5 + a6-q 6] 

(23) 

# = e-En[aT.q 4- a8-q2 W a9Tl3-k - alo,q 44- a l l  .q 5 _j_ a12T/6] 

(24) 

if) = e-En[a13rl + a14r12 + a t s r /3  + a~6r/4 + a l r r /5  

+ a18~ 6] (25) 

= e-En[at9~7 + azo~72 + a217/3 + azzr/4 + az3r/5 

4- a24176] (26) 

where  all a~ from i = 1 to 24 are independent  of ~/. As 
Smith 3 pointed  out, six-term polynomials  in 0 are 
needed because of the complexi ty  and high order of 
Eqs (11) to (14). For  instance, it can be shown by 
el iminat ion that, for neutral  stability (B = 0) in incom- 
pressible flow, ~3 is a sixth-order differential equat ion 
in 7/. The  same is true for fi, ~b and #. Eqs (23)-(26) 
automatical ly satisfy the boundary  condit ions that the 
dis turbance must decay in the mainstream and that 
at the concave surface it must have zero values, ie: 

a(~)  = e(oo)= ~ ( ~ ) =  ~(oo)= o (27) 

a(o)  = e(o) = ~ (0 )  = ~(0) = 0 (28) 

Although we fol low Smith's p rocedure  3 of introduc- 
ing a decay factor E in the exponential  terms in Eqs 
(23)-(26), Smith showed that its value is unimpor tant  
in the search for eigenvalues; numerical  values of fi, 
t3, ~b and/~ are likewise unaffected, since a change in 
E is compensated  by  corresponding changes in a~, 
from i = 1 to 24. 

After substitution of Eqs (23)-(26) in Eqs (11) 
to (14), the latter may be written in the form: 

[ P +  QK]{al, a2, a3 . . . . .  a24} = [~o~, w~, wz, wc] (29) 

where P and Q are square matrices whose elements 
are functions of ~7, { } represents a co lumn matrix in 
the unknown eoefflcients, and wx, o%, w~ and we, whieh  
is also a co lumn matrix, are the errors in t rodueed  in 
the differential equat ions due to the approximations 
in Eqs (23) to (26). Using the Galerkin method,  Eq 
(29) may be t ransformed to give: 

[P '+  Q'K][ab a2, a3 . . . . .  a24] = [0, 0, 0 . . . . .  0] 
(30) 

where P '  and Q' are square matrices of the coefficients 
obta ined by the Galerkin equations. Th e  coefficients 
of P' and Q' are evaluated by the Gauss-Laguerre  
formula;  as before,  the other matrices are co lumn 
matrices. The  twenty-four  eigenvalues of Eq (30) are 
computed  by the Q - Z  algori thm 26'27 at a value of 
de termined  by the selected value of Bea, increases in 
which  allow downstream marching along the concave 
surface• If B is prescribed,  the problem is to find the 
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least concave curvature,  ie the smallest non-negat ive  
value of K, which  will  generate that degree of instabil- 
ity. According to convent ion,  the solution is then 
expressed in terms of the least G=Reo(O/r )  1/2 for 
given /30Reo over the possible range of atg, where  0 
is related to 8 by Eq  (20). 

The  vortex energy used to help  ident i fy  the 
relation be tween G and aO along a concave surface 
is defined as the total energy possessed by  the disturb- 
ance. In the absence of Tay lor -Goer t l e r  vorticity,  the 
total energy is given by: 

Eb 1 2 

while  the total energy in the presence of vortices is: 

(32) 

Vortex energy E ,  is the difference be tween  Eqs (31) 
and (32), and by  substi tuting Eqs (1) to (5) into Eq  
(32) and neglect ing as second order the cross terms 
which  arise, this can be shown to be: 

Ev = E ~ -  E b 

Io'Io°f F, , 1 2 2 2 
= U l  -t- ~ 1  -t- W l  

x(/3 = 0 )  

cos2 az  exp ( 2  1 / 3 d x ) ] d x d y d z  

Since: 

f ]  cos az  dz  = 0 
= 2 7 r / a  

and: 

Io * sin e az  dz  
=27r/or  

~ A = 2 ~ r / a  

= cos 2 az  dz  (=A/2)  
# 0  

Substi tut ion of Eqs (23)-(25) into Eq  (33) gives: 

Ev : 1 2 ~pU~ exp ( -2E7/)  
(/3 =o) 

x [ ( a i r / . . .  a 6 r / 6 ) 2 + ( a T ,  o + .  • • + a12~76) 2 

+ (a,3~7 +" • • + alsr/6) 2] 

(33) 

Xcos 2 a z e x p  2 /3dx d x d y d z  (34) 
(/3 =o) 

Since K = 1/r  has been treated as the eigen- 
value, the normalised values of a, f rom i = 1 to 18 
mul t ip l ied  by  a constant n will also satisfy the ~ystem, 
but  will not otherwise affect the integration. We there- 
fore let n = 1. Eq  (34) is readily integrated with respect 
to z and also x if, as may be shown from its relat ion 
to/3 in Fig 7, the variat ion of exp (2 J'~(/3=o)/3 dx) above 
uni ty  is usually sufficiently small to be neglected in 
comple t ing  the integrat ion with respect to x. On 

double  integrat ion it is in fact found  for the data in 
Fig 7 that: 

(x - x/3=o) ~< exp 2 /3 dx dx 
x(/3 =o) x(/3 =o) 

1.4(x - x/3 =o) (35) 

The  dimensionless vortex energy try can then  be 
written: 

4Ev 
~/r V - -  

p U ~ X 8 ( x  - x/3 =o) 

= exp ( -2Er / ) [ (a l  7/+. • • + a6"q6) 2 

+(a7r  / + . . . + a l 2 r / 6 )  2 

+ (alz~/+" • • + azs*/6) 2] d*/ (36) 

where  the per tu rbed  componen t  of density pi has 
been taken outside the integration as being of second 
order compared  to po. With (pU%A$x)~(ORe3)/(aO), 
Eq (36) can be evaluated for given G and A, from 
which  /3, and hence  the corresponding values of ai 
from i = 1 to 18, can be obtained. F rom Eq  (33) the 
vortex energy is clearly always greater than zero. We 
reiterate that the numerica l  value for E is un impor tan t  
in the search for eigenvalues,  with numerica l  values 
for ti, t3, t~, ~ and vortex energies unaffected,  because 
a change in E is compensated  by  corresponding 
changes in a~ from i = 1 to i = 24. This  was verified 
by  running  the programme for a l imited number  of 
cases with E set equal  to 1 and then 2. 

Computa t ions  were carried out using double  
precision on the UWIST VAX computer  for 2000<~ 
Re~ ~ 6000 (corresponding to 1.23 x 105 ~< Rex <~ 1.1 x 
106), 0.2 < M~ < 0.9, and stagnation condit ions rang- 
ing from 1 bar to 15 bar, and 300 K to 1200 K. The  
average run t ime for a single e igenvalue was 3 min 
though some were longer. The  accuracy of computa-  
tions is assessed to be within 0.1%. 

Discussion of predictions and comparison 
with measurements 

Fig 4 shows, on logari thmic scales, the dependence  
of G on aO for the first critical field, with/3tgReo as 
parameter.  Although Fig 4 is for Re~ = 2000 and M~ = 
0.2 at 1 bar and 300 K, it is almost indist inguishable 
from those for other  condit ions,  as indeed are the 
illustrations which  follow; within the quo ted  ranges, 
differences in G and a# values for given /30Re~ are 
wi thin  6 per cent. For/30Reo = 0.25 these predict ions 
agree substantially with those of Smith 3 and Kahawita 
and Meroney  2 but  tend to larger G and lef tward 
displacement  of the min ima  as/3#Reo increases. Thus  
for/30Re~ = 5.0, Smith's m in im u m  G of 10 at a# = 0.65 
may be compared  with our  m in im u m  G of 13 at 
at9 = 0.38. Correspondingly ,  the curve for/30Reo = O, 
into which  those for all larger/3#Ree merge, has for 
G = 100 a value for aO of 6.8 in Smith's case but  only 
5 in our case. 

As G falls be low unity,  the neutral  stability 
curve /30Reo = 0  for the first critical state in Fig 4 
departs from that of Smith to assume the asymptot ic  
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form at s 0 = 0 . 3  predicted (as shown in Fig 2) by 
Kahawita and Meroney  2 when they retained both 
normal flow and the addit ional  curvature terms in 
their analysis. Under  these conditions,  Fig 4 also 
reproduces the cusp for min imum G reported by 
Kahawita and Meroney,  but  for [J#Ree =0.05  and 
min imum G of 0.1 at s0  = 0.15 rather than their  values 
of [3#Ree =0.11 and min imum G of 0.16 at s8  =0.12.  
Although these differences may well be at tr ibutable 
to the neglect by Kahawita and Meroney of apparent ly  
important  terms in the analysis, as discussed in the 
previous section, there is suflqcient agreement  to sup- 
port the suggestion of Chang and Sartory ]4 that at 
lower s0  (and small [3ORes), Smith's predict ions of G 
for the first critical field are too large, but  to dispute 
the conclusion of Kahawita and Meroney that the 
Galerkin method  used here and previously by Smith 
in conjunct ion with the same exponential  decay rate 
cont r ibuted  to the discrepancy between his predic- 
tions and their  own. (Hall ~5 attributes discrepancies 
at low s8  to non-appl icabi l i ty  of parallel flow theory,  
which in essence is what  is suggested above). 

Whatever  the reason for that discrepancy,  there 
is strong evidence that the normal flow terms deter- 
mine the asymptot ic  form of the first critical state at 
s0  =0 .3  in Fig 4. Our analysis also confirms the 
assertion of Kahawita and Meroney that eigenvalues 
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Fig 4 Predictions for the first critical field (I) includ- 
ing contours of dimensionless vortex energy 

of K to give G < 0.1 for neutral  stability at a0 below 
0.3 do not exist. Nor was it possible in this region to 
obtain amplification curves in the range 0 .05>  
[38Ree > 0. It is conc luded  that the influence of the 
normal velocity and addit ional  curvature  terms 
steadily increases as [30Reo falls below about  0.25 but  
above this value their  effects are marginal.  

Also shown in Fig 4 are contours of dimension-  
less vortex energy Try. The  vortex energy Ev, which  
evident ly  derives from mainstream kinetic energy 
either direct ly or through the boundary  layer, is used 
to calculate Try with a view to providing an addit ional  
cri terion to help de termine  vortex deve lopment  for 
given conditions,  ie to determine A by establishing 
the relation between G and s& While its numerical  
variation is small, the locus of m in im u m  Try, which  
lies be tween that of min imum G for given [3OReo and 
the first neutral stability curve, tends to a slope of 1.5, 
which  implies constant wavelength,  as it approaches 
the least possible value of 3.6 x 10 -3. This corresponds 
to s0  = 0.68, G = 5.3 and [3#Reo = 1.6. Were vortex 
deve lopment  along a concave surface to fol low the 
locus of min imum Try, as seems not unreasonable,  its 
fur ther  amplif ication to greater G would  involve an 
increase in dimensionless vortex energy, and leaving 
unresolved the value of s0  (and G) at which  the 
instability originated, unless at low G the locus of 
min imum 7rv merged with the neutral stability 
asymptote.  As is evident  from Fig 4, this would  imply 
an inverse relat ionship between G and s0  no matter  
what  the value of G at which  merging occurred. This 
conflicts with experimental  evidence,  to be discussed 
below, that A remains substantially constant. 

Th e  alternative is that instability may be initi- 
ated at s0  below 0.3 but, as noted by Kahawita and 
Meroney,  it raises the quest ion of the physical  signific- 
ance of zero G for neutral  stability and the improba- 
bil i ty of its incidence at zero x. Meksyn's identifica- 
tion ] of more than one critical state led the authors 
to search for eigenvalues yielding much  higher  values 
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of least G for neutral  stability than had been  examined 
for s0  < 0.3 in Fig 4. 

The  results are presented in Fig 5. The  neutral  
stability curve  for the second critical state covers only 
a l imited range of or0 be tween  0.074, when  G = 0.97, 
and 0.53, when  G = 6.65. For  marginal  stability no 
eigenvalues could  be found  for a0 < 0.074 and though  
the range of or0 thus extends be low 0.3, overall  it is 
much  less than that of the first critical state. Amplifica- 
t ion values of [30Reo up to 0.175 are also less than for 
the first critical field but  the curves similarly extend 
outside the range of a0 for neutral  stability, to values 
as low as 0.015. As wi th  the first critical state, the 
second neutral  stability curve with [30Reo = 0 merges 
with those of greater [30Reo at high or0 and is also like 
the first in alone having no mathemat ical  min imum.  
T he  least G for neutral  stability of 0.97 may neverthe- 
less be compared  with Smith's  3 m i n i m u m  G of 0.31 
and Meksyn's:  m i n i m u m  G of 3.65, both  for the first 
critical state, and Meksyn's m in imum of 10.7 for the 
second critical state. 

Al though much  of the field for the second 
critical state lies wi th in  that of the first in Fig 4, Fig 
5 shows the second to have an upper  l imit for G of 
about  7 for 0.175>~[30Reo>~0.01. Attempts to find 
eigenvalues yielding h igher  least G for a0 below 0.53 
were unsuccessful,  In the range 0.53<~ or0 ~< 2.3 eigen- 
values were however  found,  but  in all cases only  for 
[30Reo = 0. These  y ie lded a uni form least G of 70 (Fig 
5). No other  eigenvalues could  be found  for what  is 
thought  to be a th i rd  critical state, and which  in terms 
of G is separated from the second by an order of 
magni tude.  

Martin and Brown s note that L iepmann ' s  4"~ 
laminar  boundary- layer  measurements  on concave 
surfaces in zero pressure gradient  show transition to 
tu rbu lence  to begin if G exceeds 7. These  measure- 
ments were made  at low U'/Uoo. Although Dryden  25 
states that G for transit ion may be as high as 9 for 
very low mainstream turbulence  intensities, in zero 
pressure gradient  it is inconceivable  that it could  be 
as m uc h  as 70. Against this exper imental  evidence,  
the absence of eigenvalues giving least G above 7 for 
0.015 < or0 < 0.53 suggests that in this range ei ther  the 
assumed form of the disturbances in Eqs (1)-(5) in 
conjunct ion  with Eqs (23)-(26) no longer holds, or 
the laminar  boundary- layer  equat ions on which  the 
analysis is based become  invalid,  because the flow 
ceases to be laminar. (In this context Hal l  le showed 
that for a l imited choice  of boundary  layer veloci ty  
profiles, the dis tr ibut ion at least influences the neutral  
curves). If  this is so, the calculations would  appear  to 
predic t  the onset of transit ion on concave surfaces 
when  mainstream turbu lence  is negligible.  Without  
measurements  at G = 7 0 ,  it is impossible to say 
whe ther  the third critical state for 0.53<~ a0 ~< 2.3 has 
physical  significance, though  it would  seem unlikely.  
Al though the present t reatment  does not take into 
account  the inf luence of U~/Uoo, it is of interest that 
the G range for the second critical field encompasses 
the exper imental  transit ion range be tween  2.3 and 6.1 
de te rmined  by Brown and Martin 9 for turbine  blade 
pressure surfaces- in cascades and tu rbulence  
intensities up to 0.17 in favourable  pressure gradients 
below the laminarisat ion value of k. 

If  it is accepted that vortex init iat ion in laminar  
boundary- layer  flow along concave surfaces is gov- 
erned by  the second critical state rather  than the first, 
at least for or0 <~0.3 (when G ~< 2.0), the least G and 
a0 for neutral  stability are 0.97 and 0.074 respectively. 
The  case is s t rengthened by  the contours  of constant 
Cry in Fig 5 which,  like those of the first critical field, 
for given G diminish in value (al though more rapidly) 
as or0 increases; most striking are the numerica l  values 
of dimensionless vortex energy, roughly  half  those in 
Fig 4 except  for Try = 3.6 x 10 -3, which  m i n i m u m  for 
the first critical field is inc luded  to emphasise the 
comparison.  Unlike the first, the second critical field 
has no locus of m i n i m u m  7rv, only a singular m in imum 
value of 1.25 x 10 -3 on the neutral  stability curve at 
G = 2.0, a0 = 0.3. 

Th e  concept  of least dimensionless vortex 
energy thus favours the second critical state over the 
first and, as may be seen by  compar ing  the value of 
1rv for the (supposed) third critical state in Fig 5, it 
also favours the second over the third. The  effect of 
apply ing  the least energy criterion seems to be to 
narrow still fur ther  the possible range of sO for vortex 
incept ion along the neutral  stability curve for the 
second critical state to values from 0,074 to 0.3, when  
dimensionless vortex energy is least; it may be more 
than co inc idence  that this is also the asymptot ic  value 
of a0 for the first crit ical state. 

It is also significant that try contours  for 1.98 x 
10 -3 and 1.81 x 10 -3, and, to a lesser extent, those for 
lower values in Fig 5, fol low fairly closely the relation 
G/(olO) 1"5= c o n s t a n t  for uni form A. As is seen in Fig 
6, where  the measurements  of Tani  11, Tani  and 
Sakagami 12 and Yeo z2 for the Blasius flow of air and 
Winoto and Crane 21 for water flow in a curved chan- 
nel, are super imposed on the second critical field, the 
t endency  for vortex deve lopment  to take place at 
constant wavelength  is strong. Also shown in Fig 6 
are the Blasius flow measurements  for air of Bippes 
and Goert ler  23 and Han  and Cox 24, based, like others 
in Fig 6, (save those of Winoto and Crane 2~ which  
are der ived from measured 0) on Eq (20) and 6/x = 
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Fig 6 Comparison of  measurements with predictions 
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4.64xRe~ 1/2. The  values plot ted differ somewhat  
from those presented by  the above authors, the bases 
of whose calculations of 0, and hence G, being 
unfor tunate ly  not clear from their  papers. Apart from 
the single data point  of Bippes and Goertler,  of mar- 
ginally larger aO than the second neutral stability 
curve, the location of the above measurements  fur ther  
supports the arguments favouring the second critical 
field; none has G values below the second neutral 
stability curve, though one is on it at ctO = 0.09. Com- 
parison of Figs 5 and 6 shows measurements,  which  
unfor tunate ly  do not include reliable assessments of 
amplif ication rate, to be concentra ted in the region 
of relatively low Try, only one approaching  Try= 
3.6 x 10 -3. Those with values of G > 7 appear  to lie 
in a non-laminar  region (which might  well be a transi- 
t ion region), one such having been confirmed by  
Crane 2s. The  counter  argument  that G values above 
7 merely  imply a laminar  reversion to the first critical 
field also implies a step increase in/3 of more than an 
order of magnitude,  which  from an experimental  
s tandpoint  seems unlikely.  If m in imum rrv rather than 
min imum K had been the criterion for the selection 
of the critical state, the second critical field would  
become the first, and vice versa. Perhaps the analysis 
is then more clearly seen as an eigenvalue problem 
with mult iple  solutions, typical  of almost any physical  
problem with homogeneous  boundary  condit ions like 
Eqs (27) and (28). 

While vortex energy considerations therefore 
seem to limit the possible range of vortex wavelengths,  
other as yet unident i f ied influences appear  finally to 
de termine  A for given initial conditions. Thus  Tani 's  
measurements,  each set at vir tually constant 
wavelength,  can be correlated by the equation:  

Uoor 1 114 U°492 
uoo (oft) 1 ' 5 -  r T M  (37) 

over the ranges 16~  > Uoo~>3 and 10~  > r~>5, where  U~ 
is in m/s  and r in m. Wavelength is then nearly 
independen t  of mainstream velocity and 

r)[ 312 = constant (38) 

which  suggests that wavelength is finally de termined 
by radius of curvature.  

Successive increases in /30Reo during vortex 
deve lopment  along a concave surface at constant A 
do not necessarily involve corresponding increases in 
the amplification rate/3. Fig 7 depicts/3 as a funct ion 
of x (both made dimensionless by reference only to 
initial conditions) with dimensionless wavelength A 
as a parameter;  this is for the second field predicted 
in Fig 5. For  all A the amplification rate initially 
increases with x but  subsequent ly  diminishes after 
reaching a maximum determined by  A. The  greatest 
possible value of /3(~oor2/Uoo) 113 Of about  0.02 is 
achieved for a wavelength corresponding to vortex 
initiation at the least possible value of G of 0.97 on 
the second neutral  stability curve, such that 
G / ( o t O ) 3 1 2 = 4 8 . 2  and A[ 2 z 1/3 Uool(z, oor)] = 83.2. This is 
well wi thin  the range of Tani 's  n measurements  (Fig 
6). Maximum values of/3 (uoorz/Uoo) 1/3 for smaller and 
larger dimensionless wavelengths are less than 0.02. 
Fig 7 also shows the upper  boundary  of the second 
critical field, corresponding to the upper  limits for G. 
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Fig 7 Predicted amplification rate for the second 
critical field as a function of surface distance for 
various vortex wavelengths, all in dimensionless terms 

Figs 8-10 portray the normalised per turbed 
veloci ty components  as funct ions of ,1 predic ted  for 
aO = 0.117 and three values of/30Reo, viz 0, 0.05 and 
0.1, for the second critical field. These  are typical  in 
that ~, t3 and tb, whi le  unequal  in magnitude,  are 
nevertheless of the same order; all three compare  
favourably  with those of Smith a, albeit  for the first 
critical field, in extending to five or six boundary- layer  
thicknesses, and well illustrate the toroidal  nature of 
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Taylor -Goer t le r  vortices. Unfor tunately  there appear 
to be no reliable measurements of a, t3 and d~ with 
which  comparisons can be made. 

at virtually constant wavelength;  those of Liep- 
mann  4'5 also indicate a transition to turbulence  if G 
exceeds the limiting predicted value of 7 for the 
second critical state. For  laminar flow, this would  
appear  to invalidate the third critical state identified 
for G of about  70 and aO > 0.53. 

The second critical field appreciably narrows 
the possible range of vortex wavelengths and further 
persuasive evidence in its favour is provided by con- 
sideration of dimensionless vortex energy levels. Over 
the range of available measurements,  those for the 
second critical field are half those of the first and 
considerably less than for the third, thus support ing 
the concept  of least dimensionless vortex energy as 
an influential factor in the behaviour  of three- 
dimensional  disturbances. The other influences 
which  help determine vortex wavelength remain to 
be identified. 

Our predictions are found to apply to stagna- 
tion condit ions up to 15 bar and 1200 K, mainstream 
Mach numbers  up to 0.9 and Reynolds numbers,  based 
on boundary- layer  thickness, between 2000 and 6000. 

Conclusions 

In the analysis presented here, the Galerkin method  
is used to study the stability of Taylor-Goer t ler  vor- 
tices induced  in the flow of a laminar boundary- layer  
with uni form mainstream velocity along a concave 
surface. The analysis, which  i n c l u d e s t e r m s  in the 
cont inui ty  and m o m e n t u m  equations neglected in 
earlier theoretical treatments, indicates the existence 
of more than one critical state, as previously predicted 
by Meksyn 1 but at general ly lower values of Goertler 
number.  

Predictions for the first critical field are in good 
accord at h igher  G with those of Smith 3 and Kahawita 
and Meroney 2, and at lower G with the neutral stabil- 
ity asymptote  of the latter authors at otO = 0.3 when  
they retained normal  flow terms in their analysis. 
Neutral stability at lower a# is found  to occur only 
for the second critical state, whose amplification field 
over the l imited range of G between 0.97 and 7 
corresponds well with the range of available measure- 
ments, almost all of which  imply  vortex development  
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Appendix 1 Estimated order-of-magnitude of 
terms in Eqs (11)-(14) 
The procedure adopted by Smith 3 was to attempt to 
assess, in advance of his analysis, likely orders of 
magnitude of the terms in the continuity and momen- 
tum equations with a view to determining which 
might subsequently be safely neglected. In Eqs (11)- 
(14) far fewer terms are neglected, and orders of mag- 
nitude have been estimated after completion of the 
analysis from the computer predictions, based as 
stated on Blasius flow of air at stagnation conditions 
of from i barto 15 bar and 300 Kto 1200 K, 0.2 <~ M~<~ 
0.9 and 2000<~Re~<6000, together with Eqs (19), 
(20) and (22) and their derivatives. In view of the 
conclusions drawn'from the analysis, orders of magni- 
tude relate only to predictions for the second critical 
field. As is seen in Fig. 5, these cover the ranges 
0.97~<G<~7.0, O<~OReo<~O.175 and 0.015<~a0<~ 
0.53, although for marginal stability (flOReo = 0) the 
wavenumber range is restricted to 0.074 <~ aO <~ 0.53. 
Since measurements indicate that a0 never diminishes 

with increasing G and flOReo, orders of magnitude 
are assessed for that range of aO. These calculations 
are presented below in tabular form. 

Variable Minimum Maximum 
value value 

A 0.63 4.51 
B 0 6.34 × 10 -3 
K 1.61 × 10 -5 7.55 × 10 -3 

Reo 235 704.8 
Re~ 2000 6000 
0 0 1 

d0/d~7 0 2 
URea 0 6000 

Re~ d O / dTq 0 12000 
VRe~ 0 4.33 

Re~a V /a~ 0 7.28 
(3/s)ReaaV/a~ 0 7.5 x 10 -2 

(~/s) dB/de 1.4 × 10 -5 2.77 × 10 -5 
s/r 2.97× 10 -3 4.17 

d(s/r)/de 0 56.3 
(3/s)2B~ d(s/r)/de 0 1.17 x 10 -6 

Appendix 2 Representation of terms in Eqs 
(11)-(14) 

Given that the characteristic equation of state for a 
perfect gas is valid for both undisturbed and disturbed 
flow, it follows from Eqs (4) and (5) that: 

19o = poRTo Pl = pxRTo (A1) 

and hence from Eqs (9) and (10) that: 
1 U 2 i 2 plRTo/(~poo Uoo) = pRTo/(~ Uoo) 

(A2) 
Since for compressible flow: 

U~ = M~,/RT~ (A3) 

we have between Eqs (A2) and (A3): 
2 ^ yM~p 

,6= 27' (A4) 

and in Eqs (11)-(14) we can therefore from Eq (A7) 
substitute as follows: 

D 2^ yMo~p 1 a D yM% a# 
Do- 2~o7' ~o a-~ = 2Do7' an (A5) 

Differentiation of Eq (22) gives: 

a7" a (To)=_(y_ l )Pr~ /2M~Oa(y  
a'q - O~? - ~  a--~- (A6) 

and since, from Eqs (10) and (A1): 

Po peTe 
9o flaT' (A7) 

poo poe To~ 

it follows that: 

afo Do 1 ado 1 aria 07' 
(AS) 

07"- 7' Do0n DoaT'an 
By combination of Eqs (A6) and (A8) we can sub- 
stitute in Eqs (11)-(14) as follows: 

1 at~o O a 0 
~ [ l n  Do] - - =  (Y- 1)Prt/2M% =-7-po a,? ~ ~ (A9) 

78 Vol 5, No 2, June 1984 



Stability of a laminar boundary layer flowing along a concave surface 

where 0 and T are defined by Eqs (19) and (22) 
respectively.. Since we have assumed in Eq (6) that: 

~oOC T~/2/( To + 114) 

it follows that: 

ldtzo 113 To ] (A10) 
~o dTo To (To7~i14) 

or: 

¢o d ?  - ? (ro+114) 

Eq (A6) with Eq (All) then yields the following 
substitution in Eqs (11)-(14): 

a 1 a/2o 1 dt2o a To 
- -  [ I n / 2 o ]  
an fZo an f*o d2ro an 

To 14)] [3 (To+l 

0 a 0  X('y - I ) prl/2 ML -~ -a-~ (A12) 

The steady-flow continuity equation for flow along a 
concave surface, which is: 

a 
- -  ( p o r t o ) + 7  (poVo) = 0 ( A 1 3 )  Ox aV 

implies a stream function $ such that: 

aO poVo _ Po QUoo 
~x poo Poo (A14) 

aO pouo_poUUoo (A15) 
a y poo p~o 

Integration of (A15) gives in combination with Eq 
(22) 

~b= [ P__~o uo d y 
d po~ 

] 1/(~,-l) 
x PrX/2ML(1 - 02) 0 dr/ (A16) 

Substitution for 0 from Eq (19) permits completion 
of the integration of Eq (A16) by Gauss-Legendre 
quadrative procedure. With Eqs (22) and (A16), Eq 
(A14) then gives the following for substitution in Eqs 
(11) to (14): 

Q = - - ~  1 + Prt/2M%(1- 02) ax 

(A17) 

OV_ 1 { [ l + ( ~ _ ~ )  pr , /2ML( l_02)] - ' / ( ' - ' )  
an U.  

x prl/ZML 0 a 0 aO 
a71 ax 

+ [ 1 + ( ~  -[) prl/2M:(1 - 02) ]  -1/('-1) 

x a2~ 
ax aTl J 

1 a [U~V]  aVo 
s ae 0x 

(A18) 

poo a2~ 
Po 8xZ 

= _[  i + ( ~ _ ~ )  prl/2 M~( i _ 02)]-t/(~-~) aCtOr 2 

(A19) 
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